Besoin d'une information ?

RECHERCHEZ LE CONTENU QUI VOUS INTÉRESSE :
CAMPUS ET MOICAMPUS ET MOICAMPUS ET MOI
ACTUALITÉSACTUALITÉSACTUALITÉS

Master Acoustique

Nos Formations

Master Acoustique

3

Le master d’acoustique de Le Mans Université a pour objectif de former les étudiants aux métiers de l’acoustique au sens large. Il comprend deux familles de parcours :

  • Les parcours recherche (« Recherche en Acoustique », « CMI », « Wave Physics & Acoustics ») conduisent à des poursuites d’études en doctorat.

Plus de détails sur ces parcours ci-dessous :

Plateforme de candidature en ligne

parcours Recherche en Acoustique

Plus d'infos

Crédits ECTS : 120 crédits

Public concerné : Formation initiale

Présentation

Le parcours Métiers de la Recherche en Acoustique (MRAC) offre une formation approfondie en acoustique dans les fluides et dans les solides, avec notamment des enseignements en aéroacoustique, acoustique dans les milieux périodiques et les milieux poreux et en traitement du signal pour l'acoustique.

Objectifs

Les métiers de l'acoustique ont connu des transformations radicales au cours des dernières décennies et sont amenés à en connaître d'aussi importantes dans les décennies à venir.

L'objectif de la formation est de préparer les futurs chercheurs, ingénieurs de recherche et d'étude (et tous les professionnels de haut niveau des métiers de l'acoustique) à s'adapter à ces évolutions.

Les + de la formation

Pour obtenir plus d’information sur la formation, contacter:

Master 1

  • Parcours CMI : Jean Pierre Dalmont (jean-pierre.dalmont @ univ-lemans.fr) (responsable de formation)
  • Parcours Recherche & AEBTV : Olivier Dazel (olivier.dazel @ univ-lemans.fr) (responsable de formation)

Master 2

  • Parcours CMI - Recherche : Olivier Richoux (olivier.richoux @ univ-lemans.fr)
  • Parcours AETBV : Catherine Potel (catherine.potel @ univ-lemans.fr), Elisabeth Dubois (elisabeth.dubois @ univ-lemans.fr) (coordinatrice administrative)

Programme

Organisation de la formation

Tout déplierTout fermer

  • Semestre 1 M Acoustique
    • choix de 2 UE (4.0 crédits ECTS)
      • Physique des instruments de musique (2.0 crédits ECTS)
      • Room acoustics (2.0 crédits ECTS)Description :

        Présentation

        Room modelling : statistical models, geometrical models, modal behaviour - Objective and subjective criteria - Measurement of reverberation time and objective criteria from impulse response (RT, STI, C80, D50) - Introduction to Catt Acoustics software


        Objectifs :

        Objectifs

        Be able to understand the physical phenomena involved in the sound propagation in a room. - Know the acoustical objective and subjective criteria which describe a room. -  Be able to to control the room acoustics by passive materials. -  Be able to measure the room characteristics. -  Be able to build a numerical model of a room.


        Pré-requis nécessaires :

        Conditions d'admission

        Notions in acoustics an instrumentation


        Informations complémentaires :

        Informations complémentaires

        Literature References : KUTTRUFF Heinrich. Room acoustics. Crc Press, 2016. - CREMER, Lothar et MULLER, Helmut A. Principles and applications of room acoustics. Vol.1 & 2. Chapman & Hall, 1982. - BARRON, Michael. Auditorium acoustics and architectural design. Routledge, 2009. - COX, Trevor J. et D’ANTONIO, Peter. Acoustic absorbers and diffusers: theory, design and application. Crc Press, 2009. - BERANEK, Leo.      Concert halls and opera houses:  music, acoustics, and architecture. Springer Science & Business Media, 2012.

        On-line course
      • Introduction au CND (2.0 crédits ECTS)
      • Son et patrimoine (2.0 crédits ECTS)
    • Acoustics I (6.0 crédits ECTS)Description :

      Présentation

      Four lectures (around 10 hours) and four series of exercises related to each lecture (around 30 hours). The titles of lecture are (see lecture notes on UMTICE for more details): Fundamental equations of acoustics (in fluids) - Plane waves - Cylindrical and spherical waves. - Guided waves - Modal analysis


      Objectifs :

      Objectifs

      The main objective of this course is that students have solid backgrounds on fundamental aspects of acoustics including : The fundamental equations of acoustics (backgrounds in fluid mechanics and thermodynamics) - The derivation of the wave equation (mostly for the usual case of uniform fluids at rest) - The acoustics of the gas column (resonance, free oscillations, coupling etc..) - Reflexion, transmission, and diffraction phenomena - Guided waves and the modal theory - Spherical and cylindrical waves (sound radiation, diffraction, guided waves in cylindrical ducts, etc...)


      Pré-requis nécessaires :

      Conditions d'admission

      Having backgrounds in acoustics is obviously a good point, but it is not es- sential. Having solid backgrounds in mathematics is essential. This includes : trigonometry, integration/derivation, asymptotic expansions of usual functions, solving of O.D.E., functions of multiple variables, vector analysis and operators (in various systems of coordinates) , linear algebra ... Reminders of useful formula will be provided, and exercise will be treated, but you need to know that we can’t ignore mathematics in this course...


      Informations complémentaires :

      Informations complémentaires

      Literature References : A.D. Pierce, ”Acoustics, an introduction to its physical principles and applications” chapters 1, 3-5, et 7 - C. Potel, M. Bruneau, ”Acoustique Générale”, chapters 1, 3-6 (in French) - S. Temkin, ”Elements of Acoustics”, chapters 1-4

      On-line course
    • Transducers basics (2.0 crédits ECTS)Description :

      Présentation

      Lumped Elements modelling of Mechanical systems (1 DOF, 2 DOF) - Lumped Elements modelling of Acoustical systems (open or closed duct, radiation) - Equivalent circuits for coupling (electricity to mechanics and mechanics to acoustics) - Lumped Elements modelling of an electrodynamic shaker - Lumped Elements modelling of an electrodynamic loudspeaker on infinite baffle


      Objectifs :

      Objectifs

      Expected knowledge : –    know the usual characteristics of an electroacoustic chain –    know what is lumped elements modelling –    know the equivalent components describing and mechanical and acoustical behaviour - Expected Skills. Be able to:  –    model an electroacoustic system with an analytical approach and equivalent circuits –    analyze a mechanical system and represent the equivalent electrical diagram. –    calculate analytically the response of a mechanical system –    analyze an acoustical system and represent the equivalent electrical diagram –    calculate analytically the response of an acoustical system –    draw an equivalent network to the usual couplings (electromechanical, electroacoustic) –    draw an equivalent network to an electrodynamic transducer –    calculate analytically the response (efficiency, sensitivity) of an electrodynamic transducer


      Pré-requis nécessaires :

      Conditions d'admission

      Basis in electronics, acoustics and vibration


      Informations complémentaires :

      Informations complémentaires

      Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques

      On-line course
    • Mécanique des fluides
    • Mécanique des milieux déformables (3.0 crédits ECTS)
    • Maths for acoustics I (3.0 crédits ECTS)Description :

      Présentation

      13 courses of two hours mixing lectures and exercises divided in 6 chapters: - Introduction: Which problems do we want to solve ? - Finite dof systems: Mass-spring - Continuous systems: Strings, Acoustic cavities; beams, 2D and 3D problems - Strategies (analytical/numerical) to solve these problems - Matrices (Key properties of matrices, Exponential and Transfer Matrices, Key matrix fac- torisation techniques) - n degrees of freedom systems (Exponential Matrix / Transfer matrix, Modes of a finite- degree of freedom system, Resolution ) - Inner Euclidean and Hilbert Spaces (Definition, Inner products and physical systems)


      Objectifs :

      Objectifs

      Expected skills : –    Advanced Matrix calculus –    Main basis of analytical resolutions methods for finite and infinite number of degrees of freedom problems (in 1D, 2D and 3D) –    Techniques of projection (Inner-products, modes) –    Notions on finite difference schemes: truncation error, order of accuracy, spectral ac- curacy, and grid resolution. - Expected knowledge : –    Be able to find the analytical expression of simple and more advanced 1D acoustic problems (strings, beams and cavities of various shapes and boundary conditions) –    Be able to construct standard finite-difference schemes (temporal and spatial). –    Be able to control the accuracy of a finite difference approximation by selecting the scheme and the grid for 1D acoustic problems.


      Pré-requis nécessaires :

      Conditions d'admission

      Maths refresher course, especially Matrix manipulation, Calculus and Integration


      Informations complémentaires :

      Informations complémentaires

      Literature References : G. Strang, Introduction à l’algèbre linéaire, Ecole Polytechnique De Montréal, 2015

      On-line course
    • Méthodes numériques sous Python (2.0 crédits ECTS)
    • Starter courses (5.0 crédits ECTS)
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

       The aim of this course if to know and practice technical english for acoustics, mechanics, electronics and electroacoustics.


      Pré-requis nécessaires :

      Conditions d'admission

      English level B2+


  • Semestre 2 M Acoustique
    • Project management (1.0 crédits ECTS)
    • Acoustics (6.0 crédits ECTS)
      • Acoustics II-Green
      • Acoustics II-Project
      • Acoustics II-Sources
    • choix de 3 UE (6.0 crédits ECTS)
      • Transmission lines (2.0 crédits ECTS)Description :

        Présentation

        General concepts on transmission lines -  Equations of acoustic transmission lines without and with viscothermal effects -  Transfer Matrix and impedance calculation -  Effect of higher order modes -  Measurement techniques of acoustic wave guides

         


        Objectifs :

        Objectifs

        Be able to model a transmission line (duct, horn) thanks to telegraph equation and matrix formalism


        Pré-requis nécessaires :

        Conditions d'admission

        Acoustics I, transducers basics, loudspeaker systems


        Informations complémentaires :

        Informations complémentaires

        Literature References : Munjal, M. L. (2014). Acoustics of ducts and mufflers. John Wiley & Sons.- Transmission Line Theory

        On-line course
      • Introduction à l'acoustique et aux vibrations non linéaires (2.0 crédits ECTS)
      • Propagation extérieure et acoustique urbaine (2.0 crédits ECTS)
      • Acoustique des salles (Room acoustics II) (2.0 crédits ECTS)
      • Mathématiques avancées (2.0 crédits ECTS)
      • Méthodes optiques pour l'acoustique (2.0 crédits ECTS)
      • Projet libre
      • Philosophie et Histoire des Sciences (2.0 crédits ECTS)
    • Bloc vibrations (4.0 crédits ECTS)
      • Vibrations experiments (2.0 crédits ECTS)Description :

        Présentation

        Free and forced oscillations of a system having a single or two degrees of freedom -  Determination of mode parameters of a beam / Chladni’s vibrating plates -  Forced vibrations of a beam -  Free oscillations of a string -  Revving of an engine / order analysis -  Dynamic balancing


        Pré-requis nécessaires :

        Conditions d'admission

        Vibrations Refresh


      • Vibration I
      • Vibration II
    • Maths for acoustics II (2.0 crédits ECTS)
    • Signal analysis I (3.0 crédits ECTS)Description :

      Présentation

      1. Digital Filtering: (a) Introduction, properties of digital filters - (b) Analog systems simulation (IIR filters). Discrete-time approximation of loudspeaker behavior (practical) - (c) FIR filters design. Filtering with FIR Filters (practical) 2. Non stationary signal analysis:  (a) Introduction : stationarity vs non-stationarity, global ideas about time-frequency analysis, examples - (b) Limits of Fourier analysis and introduction to local Fourier analysis : classical Fourier transform (including time-frequency duality), Short-Time Fourier transform (definition, interpretation,  limits) (c) Frequencies : Instantaneous frequency, analytic signal, examples (favourable and un- favourable cases) - (d) Decompositions and densities : atomic decompositions (including wavelet analysis), densities (including Wigner-Ville decomposition) - 3. Acoustic Imaging: Acoustic intensimetry and beamforming - Nearfield Acoustic Holography (NAH) in cartesian coordinates -  Loudspeaker measurement with microphone arrays


      Objectifs :

      Objectifs

      Expected knowledge : –   Know the basics of digital filtering –   Know the basic tools of non-stationary signal analysis (Short-time Fourier Transform, wavelet analysis, Wigner-Ville distribution) –   Know the basic acoustic imaging method - Expected skills: –   Be able to design simple FIR and IIR filters –   Be able to apply them in a context of real-world data, in order to extract informations from data - Be able to write beamforming and Nearfield Acoustic Holography (NAH) codes


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis Refresh


      Informations complémentaires :

      Informations complémentaires

      Literature References : Edward P. Cunningham, Digital filtering : an introduction, New York : J. Wiley , 1995 - Time-Frequency Analysis, L. Cohen, Prentice-Hall, 1995 - Time-Frequency / Time-Scale Analysis, P. Flandrin, Academic Press, 1999  - A Wavelet Tour in Signal Processing, S. Mallat, 3rd Ed., Academic Press, 2009

       

      On-line courses
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

      Be able to communicate easily in English in a professionnal environment


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+

       


      Informations complémentaires :

      Informations complémentaires

      Literature References   Billet, C. D. (2000). Standard Technical English. Media Training Cor- poration.

    • Scientific expression (1.0 crédits ECTS)Description :

      Présentation

      Scientific writing and presentation : Scientific writing, Presentation, Posters, Effective visuals -

      Introduction to LaTeX and Beamer.


      Objectifs :

      Objectifs

      Be able to write a scientific document. Be able to give an oral defense in a limited time.


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+


      Informations complémentaires :

      Informations complémentaires

      Literature  References : Scientific Writing, D. R. Lindsay Csiro Publishing, 2011 - 122 pages - The Art of Scientific Writing: From Student Reports to Professional Publications in Chem- istry and Related Fields Hans F. Ebel, Claus Bliefert, William E. Russey, William E.. Russey John Wiley & Sons, 12 mars 2004 - 595 pages - LateX Wiki Book - LateX tutorial - Tools for drawing in LateX - Beamer guide

      online course
    • Project (4.0 crédits ECTS)Description :

      Présentation

      I. First phase :  (a) Bibliographic research - (b) Design of the prototype (number of transducers, transducer type, acoustic load type, electrical filter type) - (c) First simulations based on Lumped Elements Models (Akabak,...) - (d) First oral presentation - II. Second phase :  (a) Sketch of the mechanical part of the system (with a CAD software) - (b) Improved simulation of the acoustic response - (c) Validation of the mechanical design - (d) First report and second oral presentation - Third phase :  (a)   Design of the filters - (b) Building of the system - (c) Measurement of the system and comparison with simulations - (d) Final report and final oral presentation


      Objectifs :

      Objectifs

      Be able to design, model, build and measure an audio prototype using a limited budget


      Pré-requis nécessaires :

      Conditions d'admission

      All first year courses


      Online courses
  • Semestre 3 M Acoustique - Métiers de la recherche
    • UE à choix
      • Méthodes expérimentales en acoustique dans les fluides (2.5 crédits ECTS)
      • Méthodes expérimentales en acoustique dans les solides (2.5 crédits ECTS)
    • Choix de bloc d'UE
      • Bloc 1: Acoustique dans les fluides
        • Propriétés acoustiques des milieux périodiques (2.5 crédits ECTS)
        • Aéroacoustique (2.5 crédits ECTS)
        • Acoustique des matériaux poreux (2.5 crédits ECTS)
      • Bloc 2: Acoustique dans les solides
        • Outils numériques pour la propagation des ultrasons (2.5 crédits ECTS)
        • Contrôle non destructif par ultrasons (2.5 crédits ECTS)
        • Optoacoustique et applications
    • Ondes guidées (2.5 crédits ECTS)
    • Acoustique ds les fluides visqueux & conducteur de chaleur (2.5 crédits ECTS)
    • Acoustique non linéaire (2.5 crédits ECTS)
    • Propagation acoustique dans les solides anisotropes
    • Perception, Psychoacoustique (2.5 crédits ECTS)
    • Vibroacoustics (2.5 crédits ECTS)
    • Numerical methods
    • Signal analysis II (2.5 crédits ECTS)Description :

      Présentation

      • Linear signal modeling

       

      –   Identification of measured FRF

      –   Autoregressive, Moving Average, Autoregressive and Moving Average models

      –   Linear prediction

      –   Modern Power Spectrum Estimation

      –   Pisarenko, Prony methods, decomposition in subspaces

       

      • AcousAcoustic imaging with holography and beamforming

       

      –   Bartlett processing, Capon and Music

      –   Deconvolution

      –   Holography for non stationary sources


      Objectifs :

      Objectifs

      • Be able to implement autoregressive models
      • Be able to use and implement parametric Power Spectrum Estimation of a signal
      •  Be able to use and implement array processing methods

       


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis Refresh 1.1.6, elements of filtering, Z-transform 2.6


      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Digital Signal Processing: Principles, Algorithms and Applications (J. G. Proakis and D. G. Manolakis), Upper Saddle River, NJ: Prentice Hall, 1996.

       

      • Discrete-Time Signal Processing (A. V. Oppenheim and R. W. Schafer), Englewood Cliffs, NJ: Prentice Hall, 1989.

       

      • Modern Spectral Estimation (S. M. Kay), Englewood Cliffs, NJ: Prentice Hall, 1988.

       

      • Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography (E. G. Williams), Academic Press, New-York, 1999.
    • Séminaires
  • Semestre 4 M Acoustique - Métiers de la recherche
    • Stage en entreprise ou en laboratoire (700h) (27.5 crédits ECTS)

Contrôle des connaissances

Modalité de contrôle des connaissances générales

Et après

Poursuite d'études

  • Parcours CMI - Recherche : 50% en doctorat et 50 % en insertion professionnelle en entreprise (R&D).
  • Parcours AETBV : 90 % en insertion professionnelle (bureaux d’étude principalement), 10% en doctorat

Insertion professionnelle

Débouchés du Master Acoustique

Composante

Lieu(x) de la formation

  • Le Mans

Contacts

Contact administratif
UFR Sciences et Techniques - Scolarité

Email : sco-sciences @ univ-lemans.fr

parcours Cursus Master en Ingénierie

Plus d'infos

Public concerné : Formation initiale

Présentation

Le CMI est un parcours de la licence Acoustique et Vibrations et du master acoustique de la Faculté des sciences à l'Université du Mans. Les étudiants suivent l'ensemble des cours de la licence et du master d'acoustique et suivent des enseignements ou activités supplémentaires :

  • ouverture à l'entreprise (20h de cours chaque année, stages " découverte de l'entreprise (ouvrier)" et "technicien" obligatoires)
  • ouverture au monde de la recherche : rencontre chaque semaine avec les personnels du laboratoire, visite détaillée de l'ensemble des expériences du laboratoire, projets par équipe en lien avec le laboratoire dès la première année,
  • cours scientifiques et d'ouverture culturelle supplémentaires
  • 3 mois à l'étranger minimum obligatoires
  • accès à un FabLab en janvier 2019
  • un suivi de près par l'équipe pédagogique
  • en contrepartie : une sélection (bac S avec 12 de moyenne minimum en maths - physique pendant l'année, pas de redoublement autorisé en CMI)

Objectifs

Former des étudiants, spécialistes en acoustique, ouverts aux mondes de l'entreprise et de la recherche, capables de travailler comme ingénieur dans les départements R&D des entreprises et les départements de recherche académiques.

Les + de la formation

CMI versus Ingénieurs ?

Une école d'ingénieurs forme des généralistes avec une coloration marquée (par exemple l'acoustique). Les étudiants commencent la spécialité généralement en 3ème année (1ère année du cycle ingénieur) ou 4ème année. Le CMI Acoustique forme des spécialistes en acoustique, dès la première année post-bac, moins généralistes en physique. Les étudiants qui suivent la licence d'acoustique (parcours CMI ou non) peuvent intégrer cependant sans problème d'autres domaines de la physique (climatologie ...).

Programme

Contenu de la formation

Un étudiant inscrit en CMI suit l'ensemble du cursus de la licence Acoustique et Vibrations (précédemment Licence SPI, parcours Acoustique) et le master Acoustique existants. À cela, s'ajoutent 20% d'ECTS, qui correspondent environ à 20% de cours supplémentaires. L'étudiant suit ainsi 600 h de cours par an et doit fournir un travail personnel équivalent. Les deux figures ci-dessous schématisent cette organisation.

Contrôle des connaissances

 

Modalité de contrôle des connaissances générales

Admission

Public cible

Le CMI : pour qui ?

Le CMI s'adresse à des étudiants fortement intéressés par la science. Il sera en outre tout particulièrement adapté pour les étudiants passionnés par le son, la musique, et l'audio.

Et après

Poursuite d'études à l'étranger

Mobilité internationale

Durant son cursus de 5 ans, chaque étudiant de CMI doit effectuer une mobilité internationale d’au moins 3 mois qui peut prendre la forme d’un séjour d’études (semestre ou année) dans une université étrangère, d’un stage professionnel en entreprise, ou en laboratoire, ou encore d’une année de césure. Les étudiants du CMI Acoustique pourront s'appuyer sur le réseau international des formations et du laboratoire de recherche en acoustique. Le service des relations internationales apportera le soutien administratif, financier (ERASMUS) et logistique nécessaire.

Insertion professionnelle

Métiers de l'acoustique

Les titulaires d'un CMI sont amenés à trouver un emploi plus particulièrement dans :

  • les départements de recherche et d’innovation des entreprises : Airbus, SNECMA, Renault, Orange, SNCF, RATP ...
  • les centres de recherche techniques : LC/RPC (IFSTTAR), CSTB, CTBB, CETE ...
  • les centres de recherche internationaux publics et privés : CNRS, universités

Le métier d'ingénieur (éventuellement doublé d'une compétence en recherche) consiste à développer des solutions innovantes pour limiter le bruit des structures rayonnantes et assurer leur santé, protéger les usagers de ces perturbations, améliorer leur qualite d'écoute, voire modeler leur environnement sonore, ou encore optimiser les rendements énergétiques.

Domaines d'application

Les domaines d'application sont les suivants :

  • transports : terrestres, maritimes, aéronautiques et aérospatiaux
  • bâtiment : logement, génie civil
  • santé : acoustique médicale (échographique, audioprothèse, protections sonores actives)
  • industrie : produits manufacturés, vibrations des structures, matériaux, énergies renouvelables, contrôle non destructif, ...
  • environnement : bruit des transports, industries, éolien ...
  • audio, arts et spectacle : salles, instruments, électro-acoustique, son 3D, design sonore

Lieu(x) de la formation

  • Le Mans

Contacts

Contact administratif
UFR Sciences et Techniques - Scolarité

Email : sco-sciences @ univ-lemans.fr

parcours International Master’s Degree in Wave Physics & Acoustics

Plus d'infos

Crédits ECTS : 120 crédits

Public concerné : Formation initiale

Présentation

This international Master's Degree in Wave Physics is a two-year graduate program offered by the Institut d’Acoustique-Graduate School (IA-GS), within Le Mans University, France. Opening in September 2019, this new program is devoted to international research training in Wave Physics with an emphasis on Acoustics. It is dedicated for high level students with diverse educational backgrounds (including e.g. Bachelor Degrees in physics, mechanical/ electrical engineering, material science and acoustics), who wish to pursue an international career in academia or in leading companies.

It is an international Master's program with an excellent scientific training, and a careful choice of state-of-the-art research lectures, in direct relation to the latest research findings of the international scientific community (e.g. topological acoustics, machine learning in acoustic emission, metamaterials…).

Funded by IA-GS, this program offers excellence scholarships, international mobility grants, dedicated students’ spaces (Fablab, reconfigurable work place, openlab...).

Advanced lectures on waves by international invited experts will also be delivered in the curriculum (gravitational waves, X-ray micro-tomography, solitons in Bose-Einstein condensates, metamaterials…).

  • Eric Maire, Research Director at CNRS, Laboratory MATEIS - INSA LYON - Université de Lyon, "Imaging of materials in 3D with waves (ultrasounds, X-rays and electrons): acquisition, processing and applications…".
  • Ping Sheng, Professor at Hong-Kong University of Science and Technology, "Wave Scattering, Localization and Mesoscopic Phenomena ».
  • David H. Shoemaker, Senior Research Scientist, MIT LIGO, Leader of the Advanced LIGO Project, "Gravitational waves and experiments for their detection at LIGO".
  • Dimitri Frantzeskakis, Prof. University of Athens, "Solitons in atomic Bose Einstein Condensates".
  • Panayotis Kevrekidis, Prof. University of Massachusetts, "Localized Structures in Nonlinear Discrete Media: applications in nonlinear optics and mechanical/electrical lattices".

Objectifs

  • Prepare international students to research in general Wave Physics
  • Offer high level lectures from international experts on a wide spectrum of topics in Wave Physics (e.g. gravitational waves, x-ray micro-tomography, nonlinear optics, …)
  • Acquire most research skills as identified by e.g. Vitae Researcher Development Framework
  • Learning through research projects in the lab as part of a research team of LAUM - (Laboratoire d’Acoustique de l’Université du Mans UMR CNRS 6613)

Les + de la formation

CONTEXT

THE INSTITUTE             

Launched in September 2018, the Institut d’Acoustique-Graduate School (IA-GS) is a research and education unit focusing on a number of high-profile interdisciplinary challenges in the field of acoustics. It has been awarded the "Ecole Universitaire de Recherche" excellence label in 2017 by an international jury for its high level research laboratory LAUM and graduate program in acoustics. IA-GS is an international reference for research and education in the field of acoustics and wave propagation, with more than 150 research and academic staff and over 400 students in acoustics.  
 
THE  LAB                   
The laboratory, Laboratoire d’Acoustique de l’Université du Mans (LAUM) a joint unit of Le Mans Université and CNRS, is the heart of the IA-GS. With 165 staff in 2018 (CNRS researchers, Faculty members, technical and administrative staff, PhD candidates, post-doctoral students), LAUM is one of the largest laboratories on acoustics in Europe and worldwide.  

 

LAUM takes its strength and originality in a collaborative way of working, by completely sharing all facilities and the budget, thereby facilitating and amplifying the quality and diversity of the research, and the integration of new talented staff. In addition, the collaborations between LAUM members are made easier as 95% of the people work in a unified site with less than a 500m distance one building from the others. This configuration is very favorable to organize original and integrated program in close relation to the laboratory facilities and life, for optimal education through research. 

 

Our contributions to research in acoustics are oriented towards the physics of (acoustic) waves, from basic research to applications, with experimental and methodological developments that are fully oriented towards fine and original measurements of sound (digital holography, laser ultrasonics, electro-acoustics, …). This “all-in-one” positioning, from fundamental to applied research, covering a wide spectrum of topics and applications is the hallmark of LAUM.
 

Programme

Contenu de la formation

TRAINING CONTENT  

EDUCATION THROUGH RESEARCH            
During the first month of G1 (first year of Master), LAUM research activities will be exposed in details to the students by the members of the teams. Different ambitious international research projects will be announced, the list of which is established and previously discussed in view of the scientific priorities of LAUM and the graduate school. Right after this orientation period, the students will start to participate to the scientific activities of the different groups relevant to the chosen topics and work in direct contact with PhD students, postdoctoral fellows, staff participating in the group current projects (i.e. a continuum of students, young researchers and experienced researcher will rally around the defined project). 

The Master program follows an education-through-research approach, in which the percentage of the research time is important and progressively increased over the 4 semesters (25% G1-S1, 50% G1-S2, 75% G2-S3 and 100% G2-S4). The practical work lectures are removed and replaced by research-connected laboratory time (fabrication of samples, contribution to an experimental setup using the Fablab, acoustic experiments, participation in current PhD and postdoctoral student’s projects with some tasks…). 

 

STUDENT MENTORING 

To guarantee the proper integration of the students and monitor their progress, each of them will benefit from a unique and individual supervision by a CNRS research scientist or a faculty member, recognized in his/her discipline, who will monitor the progress of the student and guide him/her in the construction of a personalized curriculum according to his/her scientific objectives and interests.  

At the end of each semester, the student will present a progress report and discuss his/her project with his/her supervisor. The selection of the mentor will be based on the background and the research interests of each student, and will be validated by the Graduate School Steering Committee.

Organisation de la formation

Tout déplierTout fermer

  • Semestre 1 M Wave Physics and Acoustics
    • Physics of waves I (8.0 crédits ECTS)
    • Methods for waves I (8.0 crédits ECTS)
    • Physical Acoustics I (8.0 crédits ECTS)
    • Introduction to research I (6.0 crédits ECTS)
  • Semestre 2 M Wave Physics and Acoustics
    • Physics of waves II (6.0 crédits ECTS)
    • Methods for waves II (6.0 crédits ECTS)
    • Elastic wavesn vibration and introduction to nonlinear waves (8.0 crédits ECTS)
    • Introduction to research II (10.0 crédits ECTS)

Contrôle des connaissances

Modalité de contrôle des connaissances générales

Aménagements particuliers

FACILITIES 

  • For the total immersion of the Master level students in the laboratory, dedicated student spaces have been installed within the LAUM. They are equipped with whiteboards, reconfigurable desks, individual stations for co-working / seminar configuration, printers, projectors, lockers, sofas… These spots are contributing to the quality of student interactions, co-working, and emulation
  • A new Fablab for the students opened in 2019. It contains the dedicated equipment such as 3D printers, mechanical tools, a programmable milling machine, a laser cutter, CAO tools, some testing equipment (electronic, mechanical, acoustic)…  
  • LAUM boasts exceptional research experimental facilities, with anechoic rooms, laser vibrometers, microphone antennas, amplifiers, equipment at the cutting edge of technology… All accessible to students through their integration to the lab

 

SCHOLARSHIPS/FELLOWSHIPS PROGRAM 


Each academic year, 10 scholarships will be awarded to the best WPA students (5 in Master 1 and 5 in Master 2) by the IA-GS selection committee. The annual amount of the IA-GS scholarship is 5000€ per student and per academic year. The selection is based on academic excellence (overall Bachelor grade and scientific test grade), personal project and motivation. 

 

INTERNATIONAL MOBILITY GRANTS 

An important budget from IA-GS is allocated to fund student international mobility. As such, students will be offered the possibility to carry out internships abroad to the partners of our international network of more than 60 institutions comprising, e.g. KTH Stockholm, CALTECH, MIT, Harvard, Université de Sherbrooke, Nanjing University, Hong-Kong University of Science and Technology, Washington State University, University of California at San Diego, University of Campinas, Leuven University, University of Athens, University of Sidney, CPUT... 

Admission

Condition d'accès

APPLICATION

To apply to this international Master program, a bachelor Degree is mandatory, in the following fields: physics, mechanical/ electrical engineering, material science, acoustics…


A selection committee will evaluate the applications and select the students on the basis of the Bachelor results, matching of the profile  with the Master’s program and motivation.

Application procedure

The online application platform is now opened.

Important information about the covid-19 situation: 

We have managed to adapt the lectures to online courses, in the case students are not able to attend, get a visa for September or e.g. need a quarantine. To this date, we expect no big problem for September, however, we are ready to organize a first semester with minimal student presence required. For any question, please contact iags @ univ-lemans.fr

Composante

Lieu(x) de la formation

  • Le Mans

Contacts

Contact administratif
Institut d’Acoustique-Graduate School

Email : iags @ univ-lemans.fr

parcours Acoustique de l’Environnement, Transports, Bâtiment, Ville

Plus d'infos

Crédits ECTS : 120 crédits

Présentation

Objectifs

Cette formation, à vocation nationale, a pour objectif de donner à des étudiants qui possèdent déjà de bonnes bases scientifiques, une formation d’ensemble sur les problèmes du bruit des moyens de transports sous leurs divers aspects (technologiques, physiologiques et psychologiques, ergonomiques, sociologiques, normatifs, réglementaires et législatifs, juridiques, stratégiques) et environnementaux dans une démarche de développement durable, en relation avec tous les acteurs (industriels, exploitants, pouvoirs publics et judiciaires, associations).

Ce Master bénéficie d’une convention avec les trois grands organismes du domaine qui accueillent les étudiants chacun une semaine pour des enseignements délocalisés, les faisant bénéficier des installations et des compétences des chercheurs et ingénieurs sur chaque site :
- l’IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux) à Bron
- l’IFSTTAR à Nantes
- le CSTB (Centre Scientifique et Technique du Bâtiment) à Grenoble

Programme

Organisation de la formation

Tout déplierTout fermer

  • Semestre 1 M Acoustique
    • choix de 2 UE (4.0 crédits ECTS)
      • Physique des instruments de musique (2.0 crédits ECTS)
      • Room acoustics (2.0 crédits ECTS)Description :

        Présentation

        Room modelling : statistical models, geometrical models, modal behaviour - Objective and subjective criteria - Measurement of reverberation time and objective criteria from impulse response (RT, STI, C80, D50) - Introduction to Catt Acoustics software


        Objectifs :

        Objectifs

        Be able to understand the physical phenomena involved in the sound propagation in a room. - Know the acoustical objective and subjective criteria which describe a room. -  Be able to to control the room acoustics by passive materials. -  Be able to measure the room characteristics. -  Be able to build a numerical model of a room.


        Pré-requis nécessaires :

        Conditions d'admission

        Notions in acoustics an instrumentation


        Informations complémentaires :

        Informations complémentaires

        Literature References : KUTTRUFF Heinrich. Room acoustics. Crc Press, 2016. - CREMER, Lothar et MULLER, Helmut A. Principles and applications of room acoustics. Vol.1 & 2. Chapman & Hall, 1982. - BARRON, Michael. Auditorium acoustics and architectural design. Routledge, 2009. - COX, Trevor J. et D’ANTONIO, Peter. Acoustic absorbers and diffusers: theory, design and application. Crc Press, 2009. - BERANEK, Leo.      Concert halls and opera houses:  music, acoustics, and architecture. Springer Science & Business Media, 2012.

        On-line course
      • Introduction au CND (2.0 crédits ECTS)
      • Son et patrimoine (2.0 crédits ECTS)
    • Acoustics I (6.0 crédits ECTS)Description :

      Présentation

      Four lectures (around 10 hours) and four series of exercises related to each lecture (around 30 hours). The titles of lecture are (see lecture notes on UMTICE for more details): Fundamental equations of acoustics (in fluids) - Plane waves - Cylindrical and spherical waves. - Guided waves - Modal analysis


      Objectifs :

      Objectifs

      The main objective of this course is that students have solid backgrounds on fundamental aspects of acoustics including : The fundamental equations of acoustics (backgrounds in fluid mechanics and thermodynamics) - The derivation of the wave equation (mostly for the usual case of uniform fluids at rest) - The acoustics of the gas column (resonance, free oscillations, coupling etc..) - Reflexion, transmission, and diffraction phenomena - Guided waves and the modal theory - Spherical and cylindrical waves (sound radiation, diffraction, guided waves in cylindrical ducts, etc...)


      Pré-requis nécessaires :

      Conditions d'admission

      Having backgrounds in acoustics is obviously a good point, but it is not es- sential. Having solid backgrounds in mathematics is essential. This includes : trigonometry, integration/derivation, asymptotic expansions of usual functions, solving of O.D.E., functions of multiple variables, vector analysis and operators (in various systems of coordinates) , linear algebra ... Reminders of useful formula will be provided, and exercise will be treated, but you need to know that we can’t ignore mathematics in this course...


      Informations complémentaires :

      Informations complémentaires

      Literature References : A.D. Pierce, ”Acoustics, an introduction to its physical principles and applications” chapters 1, 3-5, et 7 - C. Potel, M. Bruneau, ”Acoustique Générale”, chapters 1, 3-6 (in French) - S. Temkin, ”Elements of Acoustics”, chapters 1-4

      On-line course
    • Transducers basics (2.0 crédits ECTS)Description :

      Présentation

      Lumped Elements modelling of Mechanical systems (1 DOF, 2 DOF) - Lumped Elements modelling of Acoustical systems (open or closed duct, radiation) - Equivalent circuits for coupling (electricity to mechanics and mechanics to acoustics) - Lumped Elements modelling of an electrodynamic shaker - Lumped Elements modelling of an electrodynamic loudspeaker on infinite baffle


      Objectifs :

      Objectifs

      Expected knowledge : –    know the usual characteristics of an electroacoustic chain –    know what is lumped elements modelling –    know the equivalent components describing and mechanical and acoustical behaviour - Expected Skills. Be able to:  –    model an electroacoustic system with an analytical approach and equivalent circuits –    analyze a mechanical system and represent the equivalent electrical diagram. –    calculate analytically the response of a mechanical system –    analyze an acoustical system and represent the equivalent electrical diagram –    calculate analytically the response of an acoustical system –    draw an equivalent network to the usual couplings (electromechanical, electroacoustic) –    draw an equivalent network to an electrodynamic transducer –    calculate analytically the response (efficiency, sensitivity) of an electrodynamic transducer


      Pré-requis nécessaires :

      Conditions d'admission

      Basis in electronics, acoustics and vibration


      Informations complémentaires :

      Informations complémentaires

      Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques

      On-line course
    • Mécanique des fluides
    • Mécanique des milieux déformables (3.0 crédits ECTS)
    • Maths for acoustics I (3.0 crédits ECTS)Description :

      Présentation

      13 courses of two hours mixing lectures and exercises divided in 6 chapters: - Introduction: Which problems do we want to solve ? - Finite dof systems: Mass-spring - Continuous systems: Strings, Acoustic cavities; beams, 2D and 3D problems - Strategies (analytical/numerical) to solve these problems - Matrices (Key properties of matrices, Exponential and Transfer Matrices, Key matrix fac- torisation techniques) - n degrees of freedom systems (Exponential Matrix / Transfer matrix, Modes of a finite- degree of freedom system, Resolution ) - Inner Euclidean and Hilbert Spaces (Definition, Inner products and physical systems)


      Objectifs :

      Objectifs

      Expected skills : –    Advanced Matrix calculus –    Main basis of analytical resolutions methods for finite and infinite number of degrees of freedom problems (in 1D, 2D and 3D) –    Techniques of projection (Inner-products, modes) –    Notions on finite difference schemes: truncation error, order of accuracy, spectral ac- curacy, and grid resolution. - Expected knowledge : –    Be able to find the analytical expression of simple and more advanced 1D acoustic problems (strings, beams and cavities of various shapes and boundary conditions) –    Be able to construct standard finite-difference schemes (temporal and spatial). –    Be able to control the accuracy of a finite difference approximation by selecting the scheme and the grid for 1D acoustic problems.


      Pré-requis nécessaires :

      Conditions d'admission

      Maths refresher course, especially Matrix manipulation, Calculus and Integration


      Informations complémentaires :

      Informations complémentaires

      Literature References : G. Strang, Introduction à l’algèbre linéaire, Ecole Polytechnique De Montréal, 2015

      On-line course
    • Méthodes numériques sous Python (2.0 crédits ECTS)
    • Starter courses (5.0 crédits ECTS)
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

       The aim of this course if to know and practice technical english for acoustics, mechanics, electronics and electroacoustics.


      Pré-requis nécessaires :

      Conditions d'admission

      English level B2+


  • Semestre 2 M Acoustique
    • Project management (1.0 crédits ECTS)
    • Acoustics (6.0 crédits ECTS)
      • Acoustics II-Green
      • Acoustics II-Project
      • Acoustics II-Sources
    • choix de 3 UE (6.0 crédits ECTS)
      • Transmission lines (2.0 crédits ECTS)Description :

        Présentation

        General concepts on transmission lines -  Equations of acoustic transmission lines without and with viscothermal effects -  Transfer Matrix and impedance calculation -  Effect of higher order modes -  Measurement techniques of acoustic wave guides

         


        Objectifs :

        Objectifs

        Be able to model a transmission line (duct, horn) thanks to telegraph equation and matrix formalism


        Pré-requis nécessaires :

        Conditions d'admission

        Acoustics I, transducers basics, loudspeaker systems


        Informations complémentaires :

        Informations complémentaires

        Literature References : Munjal, M. L. (2014). Acoustics of ducts and mufflers. John Wiley & Sons.- Transmission Line Theory

        On-line course
      • Introduction à l'acoustique et aux vibrations non linéaires (2.0 crédits ECTS)
      • Propagation extérieure et acoustique urbaine (2.0 crédits ECTS)
      • Acoustique des salles (Room acoustics II) (2.0 crédits ECTS)
      • Mathématiques avancées (2.0 crédits ECTS)
      • Méthodes optiques pour l'acoustique (2.0 crédits ECTS)
      • Projet libre
      • Philosophie et Histoire des Sciences (2.0 crédits ECTS)
    • Bloc vibrations (4.0 crédits ECTS)
      • Vibrations experiments (2.0 crédits ECTS)Description :

        Présentation

        Free and forced oscillations of a system having a single or two degrees of freedom -  Determination of mode parameters of a beam / Chladni’s vibrating plates -  Forced vibrations of a beam -  Free oscillations of a string -  Revving of an engine / order analysis -  Dynamic balancing


        Pré-requis nécessaires :

        Conditions d'admission

        Vibrations Refresh


      • Vibration I
      • Vibration II
    • Maths for acoustics II (2.0 crédits ECTS)
    • Signal analysis I (3.0 crédits ECTS)Description :

      Présentation

      1. Digital Filtering: (a) Introduction, properties of digital filters - (b) Analog systems simulation (IIR filters). Discrete-time approximation of loudspeaker behavior (practical) - (c) FIR filters design. Filtering with FIR Filters (practical) 2. Non stationary signal analysis:  (a) Introduction : stationarity vs non-stationarity, global ideas about time-frequency analysis, examples - (b) Limits of Fourier analysis and introduction to local Fourier analysis : classical Fourier transform (including time-frequency duality), Short-Time Fourier transform (definition, interpretation,  limits) (c) Frequencies : Instantaneous frequency, analytic signal, examples (favourable and un- favourable cases) - (d) Decompositions and densities : atomic decompositions (including wavelet analysis), densities (including Wigner-Ville decomposition) - 3. Acoustic Imaging: Acoustic intensimetry and beamforming - Nearfield Acoustic Holography (NAH) in cartesian coordinates -  Loudspeaker measurement with microphone arrays


      Objectifs :

      Objectifs

      Expected knowledge : –   Know the basics of digital filtering –   Know the basic tools of non-stationary signal analysis (Short-time Fourier Transform, wavelet analysis, Wigner-Ville distribution) –   Know the basic acoustic imaging method - Expected skills: –   Be able to design simple FIR and IIR filters –   Be able to apply them in a context of real-world data, in order to extract informations from data - Be able to write beamforming and Nearfield Acoustic Holography (NAH) codes


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis Refresh


      Informations complémentaires :

      Informations complémentaires

      Literature References : Edward P. Cunningham, Digital filtering : an introduction, New York : J. Wiley , 1995 - Time-Frequency Analysis, L. Cohen, Prentice-Hall, 1995 - Time-Frequency / Time-Scale Analysis, P. Flandrin, Academic Press, 1999  - A Wavelet Tour in Signal Processing, S. Mallat, 3rd Ed., Academic Press, 2009

       

      On-line courses
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

      Be able to communicate easily in English in a professionnal environment


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+

       


      Informations complémentaires :

      Informations complémentaires

      Literature References   Billet, C. D. (2000). Standard Technical English. Media Training Cor- poration.

    • Scientific expression (1.0 crédits ECTS)Description :

      Présentation

      Scientific writing and presentation : Scientific writing, Presentation, Posters, Effective visuals -

      Introduction to LaTeX and Beamer.


      Objectifs :

      Objectifs

      Be able to write a scientific document. Be able to give an oral defense in a limited time.


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+


      Informations complémentaires :

      Informations complémentaires

      Literature  References : Scientific Writing, D. R. Lindsay Csiro Publishing, 2011 - 122 pages - The Art of Scientific Writing: From Student Reports to Professional Publications in Chem- istry and Related Fields Hans F. Ebel, Claus Bliefert, William E. Russey, William E.. Russey John Wiley & Sons, 12 mars 2004 - 595 pages - LateX Wiki Book - LateX tutorial - Tools for drawing in LateX - Beamer guide

      online course
    • Project (4.0 crédits ECTS)Description :

      Présentation

      I. First phase :  (a) Bibliographic research - (b) Design of the prototype (number of transducers, transducer type, acoustic load type, electrical filter type) - (c) First simulations based on Lumped Elements Models (Akabak,...) - (d) First oral presentation - II. Second phase :  (a) Sketch of the mechanical part of the system (with a CAD software) - (b) Improved simulation of the acoustic response - (c) Validation of the mechanical design - (d) First report and second oral presentation - Third phase :  (a)   Design of the filters - (b) Building of the system - (c) Measurement of the system and comparison with simulations - (d) Final report and final oral presentation


      Objectifs :

      Objectifs

      Be able to design, model, build and measure an audio prototype using a limited budget


      Pré-requis nécessaires :

      Conditions d'admission

      All first year courses


      Online courses
  • Semestre 3 M Acoustique - Acoustique de l'environnement
    • Perception, Psychoacoustique (2.5 crédits ECTS)
    • Numerical methods
    • Acoustique Physiologique (2.5 crédits ECTS)
    • TP numériques en vibroacoustique (2.5 crédits ECTS)
    • Méthodes expérimentales AETBV (2.5 crédits ECTS)
    • Aspects juridiques du bruit (2.5 crédits ECTS)
    • Enseignement délocalisé à IFSTTAR Bron (2.5 crédits ECTS)
    • Enseignement délocalisé à IFSTTAR Nantes (2.5 crédits ECTS)
    • Enseignement délocalisé au CSTB Grenoble (2.5 crédits ECTS)
    • Etude de cas (5.0 crédits ECTS)
    • Anglais (2.5 crédits ECTS)
  • Semestre 4 M Acoustique - Acoustique de l'environnement
    • Cours professionnels (2.5 crédits ECTS)
    • Stage en entreprise ou en laboratoire (800h) (30.0 crédits ECTS)

Contrôle des connaissances

Modalité de contrôle des connaissances générales

Et après

Poursuite d'études

  • Parcours CMI - Recherche : 50% en doctorat et 50 % en insertion professionnelle en entreprise (R&D).
  • Parcours AETBV : 90 % en insertion professionnelle (bureaux d’étude principalement), 10% en doctorat

Insertion professionnelle

Débouchés du Master Acoustique

Composante

Lieu(x) de la formation

  • Le Mans

Contacts

Contact administratif
UFR Sciences et Techniques - Scolarité

Email : sco-sciences @ univ-lemans.fr

parcours International Master's Degree in Electroacoustics

Plus d'infos

Crédits ECTS : 120 crédits

Public concerné : Formation initiale

Présentation

The International Master's Degree in ElectroAcoustics offers students the possibility to learn the fundamentals in electroacoustics and in related fields.

The program offers a specialized education in:

  • electroacoustics
  • mechanics and materials
  • transducers (loudspeakers, microphones)
  • acoustic loads and acoustic radiation
  • real time signal processing

The master’s program prepares students for careers dealing with different aspects of electroacoustics which require strong analytical and research skills, whether in the public or private sectors and for PhD studies or research activities.

Les + de la formation

Accès au site du Parcours

 Pour obtenir plus d’information sur la formation, contacter:

Master 1

  • Manuel Melon (imdeacoustics @ univ-lemans.fr) (responsable de formation), Laurence Couturier (imdeacoustics @ univ-lemans.fr) (coordinatrice administrative) 

 

Master 2

  • Bruno Gazengel (imdeacoustics @ univ-lemans.fr)  (responsable de formation), Laurence Couturier (imdeacoustics @ univ-lemans.fr) (coordinatrice administrative)

Programme

Organisation de la formation

Tout déplierTout fermer

  • Semestre 1 M Acoustique - Electroacoustique
    • Electronics basics (1.0 crédits ECTS)Description :

      Présentation

      Electronic circuit theory, diodes, impulse response, resonant circuits, active filters, transistor. . .


      Objectifs :

      Objectifs

      Be able to model a passive electrical network (be able to predict impedance and Transfer function) -  Be able to model a active analogical electrical network using Op. Amp. (be able to predict impedance and Transfer function)


    • Instrumentation basics (1.0 crédits ECTS)Description :

      Présentation

      Electronics : Simulation of systems using LT Spice (passive filter, active filter, envelope detector) -   Implementation and measurement of the systems | Transducer : Study of usual signals for measurement  - Loudspeaker transfer functions measurement (electrical impedance, pressure response) - Loudspeaker sensitivity estimation from pressure response


      Objectifs :

      Objectifs

      Be able to measure the characteristics of an acoustic system (spectrum analysis, transfer function analysis) -  Be able to make a simulation and to measure the response of an analog electrical network (passive loudspeaker filter) -  Be able to make a simulation and to measure the response of an analog active network using Op. Amp (active loudspeaker filter)


      Informations complémentaires :

      Informations complémentaires

      Literature References : Dominique Placko, Fundamentals of Instrumentation and Measurement, John Wiley & Sons, 1 mars 2013 - 532 pages -  Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, Springer Science & Business Media, 22 sept. 2010 - 663 pages -  MICHAEL SAYER, ABHAI MANSINGH, MEASUREMENT, INSTRUMENTATION AND EXPERIMENT DESIGN IN PHYSICS AND ENGINEERING, PHI Learning Pvt.  Ltd., 1 janv.  1999 -380 pages -  Charles P. Wright, Applied Measurement Engineering: How to Design Effective Mechanical Measurement Systems, Prentice Hall PTR, 1995 - 402 pages - Bob Metzler, Audio Measurement Handbook, Audio Precision, 1993 - 178 pages

      On-line course
    • Acoustics I (6.0 crédits ECTS)Description :

      Présentation

      Four lectures (around 10 hours) and four series of exercises related to each lecture (around 30 hours). The titles of lecture are (see lecture notes on UMTICE for more details): Fundamental equations of acoustics (in fluids) - Plane waves - Cylindrical and spherical waves. - Guided waves - Modal analysis


      Objectifs :

      Objectifs

      The main objective of this course is that students have solid backgrounds on fundamental aspects of acoustics including : The fundamental equations of acoustics (backgrounds in fluid mechanics and thermodynamics) - The derivation of the wave equation (mostly for the usual case of uniform fluids at rest) - The acoustics of the gas column (resonance, free oscillations, coupling etc..) - Reflexion, transmission, and diffraction phenomena - Guided waves and the modal theory - Spherical and cylindrical waves (sound radiation, diffraction, guided waves in cylindrical ducts, etc...)


      Pré-requis nécessaires :

      Conditions d'admission

      Having backgrounds in acoustics is obviously a good point, but it is not es- sential. Having solid backgrounds in mathematics is essential. This includes : trigonometry, integration/derivation, asymptotic expansions of usual functions, solving of O.D.E., functions of multiple variables, vector analysis and operators (in various systems of coordinates) , linear algebra ... Reminders of useful formula will be provided, and exercise will be treated, but you need to know that we can’t ignore mathematics in this course...


      Informations complémentaires :

      Informations complémentaires

      Literature References : A.D. Pierce, ”Acoustics, an introduction to its physical principles and applications” chapters 1, 3-5, et 7 - C. Potel, M. Bruneau, ”Acoustique Générale”, chapters 1, 3-6 (in French) - S. Temkin, ”Elements of Acoustics”, chapters 1-4

      On-line course
    • Transducers basics (2.0 crédits ECTS)Description :

      Présentation

      Lumped Elements modelling of Mechanical systems (1 DOF, 2 DOF) - Lumped Elements modelling of Acoustical systems (open or closed duct, radiation) - Equivalent circuits for coupling (electricity to mechanics and mechanics to acoustics) - Lumped Elements modelling of an electrodynamic shaker - Lumped Elements modelling of an electrodynamic loudspeaker on infinite baffle


      Objectifs :

      Objectifs

      Expected knowledge : –    know the usual characteristics of an electroacoustic chain –    know what is lumped elements modelling –    know the equivalent components describing and mechanical and acoustical behaviour - Expected Skills. Be able to:  –    model an electroacoustic system with an analytical approach and equivalent circuits –    analyze a mechanical system and represent the equivalent electrical diagram. –    calculate analytically the response of a mechanical system –    analyze an acoustical system and represent the equivalent electrical diagram –    calculate analytically the response of an acoustical system –    draw an equivalent network to the usual couplings (electromechanical, electroacoustic) –    draw an equivalent network to an electrodynamic transducer –    calculate analytically the response (efficiency, sensitivity) of an electrodynamic transducer


      Pré-requis nécessaires :

      Conditions d'admission

      Basis in electronics, acoustics and vibration


      Informations complémentaires :

      Informations complémentaires

      Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques

      On-line course
    • Loudspeaker system (4.0 crédits ECTS)Description :

      Présentation

      Usual loudspeaker systems (active, passive) - Usual electrical filters - Lumped elements models a usual loudspeaker systems (sealed enclosure, vented enclosure) with equivalent networks. - Measurement of loudspeaker systems characteristics (sealed enclosure, vented enclosure).


      Objectifs :

      Objectifs

      Know the different loudspeaker systems types (active, passive) - Know the different electrical filter types
      Know the different acoustic loads -  Be able to model a loudspeaker system (sealed & vent enclosure, passive filters)


      Pré-requis nécessaires :

      Conditions d'admission

       Transducers basics


      Informations complémentaires :

      Informations complémentaires

      Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques (in French), 2007

      On-line course
    • Digital electronics 1 (1.0 crédits ECTS)Description :

      Présentation

      Introduction to digital electronics, digital signal processing, devices, IDE (integrated development environment). - SNR measurement, analysis of noise, interest of oversampling.


      Objectifs :

      Objectifs

      Be able to analyse the quality and to choose a ADC or DAC converter.


      Pré-requis nécessaires :

      Conditions d'admission

      Electronics refresh, Instrumentation refresh


    • Maths for acoustics I (3.0 crédits ECTS)Description :

      Présentation

      13 courses of two hours mixing lectures and exercises divided in 6 chapters: - Introduction: Which problems do we want to solve ? - Finite dof systems: Mass-spring - Continuous systems: Strings, Acoustic cavities; beams, 2D and 3D problems - Strategies (analytical/numerical) to solve these problems - Matrices (Key properties of matrices, Exponential and Transfer Matrices, Key matrix fac- torisation techniques) - n degrees of freedom systems (Exponential Matrix / Transfer matrix, Modes of a finite- degree of freedom system, Resolution ) - Inner Euclidean and Hilbert Spaces (Definition, Inner products and physical systems)


      Objectifs :

      Objectifs

      Expected skills : –    Advanced Matrix calculus –    Main basis of analytical resolutions methods for finite and infinite number of degrees of freedom problems (in 1D, 2D and 3D) –    Techniques of projection (Inner-products, modes) –    Notions on finite difference schemes: truncation error, order of accuracy, spectral ac- curacy, and grid resolution. - Expected knowledge : –    Be able to find the analytical expression of simple and more advanced 1D acoustic problems (strings, beams and cavities of various shapes and boundary conditions) –    Be able to construct standard finite-difference schemes (temporal and spatial). –    Be able to control the accuracy of a finite difference approximation by selecting the scheme and the grid for 1D acoustic problems.


      Pré-requis nécessaires :

      Conditions d'admission

      Maths refresher course, especially Matrix manipulation, Calculus and Integration


      Informations complémentaires :

      Informations complémentaires

      Literature References : G. Strang, Introduction à l’algèbre linéaire, Ecole Polytechnique De Montréal, 2015

      On-line course
    • Room acoustics (2.0 crédits ECTS)Description :

      Présentation

      Room modelling : statistical models, geometrical models, modal behaviour - Objective and subjective criteria - Measurement of reverberation time and objective criteria from impulse response (RT, STI, C80, D50) - Introduction to Catt Acoustics software


      Objectifs :

      Objectifs

      Be able to understand the physical phenomena involved in the sound propagation in a room. - Know the acoustical objective and subjective criteria which describe a room. -  Be able to to control the room acoustics by passive materials. -  Be able to measure the room characteristics. -  Be able to build a numerical model of a room.


      Pré-requis nécessaires :

      Conditions d'admission

      Notions in acoustics an instrumentation


      Informations complémentaires :

      Informations complémentaires

      Literature References : KUTTRUFF Heinrich. Room acoustics. Crc Press, 2016. - CREMER, Lothar et MULLER, Helmut A. Principles and applications of room acoustics. Vol.1 & 2. Chapman & Hall, 1982. - BARRON, Michael. Auditorium acoustics and architectural design. Routledge, 2009. - COX, Trevor J. et D’ANTONIO, Peter. Acoustic absorbers and diffusers: theory, design and application. Crc Press, 2009. - BERANEK, Leo.      Concert halls and opera houses:  music, acoustics, and architecture. Springer Science & Business Media, 2012.

      On-line course
    • Microphone basics (1.0 crédits ECTS)Description :

      Présentation

      Introduction -  Audio Systems Characterisation
       Microphone directivity (membrane & sound interaction) - Recording microphones (mono, stereo, multichannel) - Electrodynamic microphones (pressure microphone, ribbon microphone, unidirectional microphone)


      Objectifs :

      Objectifs

      Know the technical characteristics of microphones. - Be able to choose a microphone according to the datasheet. - Be able to model (sensitivity) an electrodynamic omnidirectional microphone.


      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, acoustics 1


      Informations complémentaires :

      Informations complémentaires

      Literature References : Ray A. Rayburn, Eargle’s The Microphone Book:  From Mono to Stereo to Surround - A Guide to Microphone Design and Application, Taylor & Francis, 12 nov. 2012 - 466 pages - Glen Ballou, Electroacoustic Devices: Microphones and Loudspeakers, Taylor & Francis, 10 sept. 2012 - 328 pages

      On-line course
    • Starter courses (5.0 crédits ECTS)
    • Signal for audio (2.0 crédits ECTS)
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

       The aim of this course if to know and practice technical english for acoustics, mechanics, electronics and electroacoustics.


      Pré-requis nécessaires :

      Conditions d'admission

      English level B2+


  • Semestre 2 M Acoustique - Electroacoustique
    • Acoustics (4.0 crédits ECTS)Description :

      Présentation

      I) INTRODUCTION : (a)   Non homogeneous differential equations: various examples in physics (b)    Toolbox : 1.Linear differential operator - 2. Boundary conditions (Fourier transform - Green’s identities) - 3.Dirac distribution - II) TIME-INDEPENDENT PROBLEM : (a)   Definition of the Green’s function - (b)    Interpretation - (c)    Homogeneous Boundary Conditions - (d) Reciprocity - (e)   Solution (Method of Variations of Parameters - Sturm-Liouville Problem - Eigenmode Expansion - Direct Method)  - III) 3D (and 2D) free space Green’s function : (a) Integral Formalism in Acoustics - (b) Introduction - (c) Green’s theorem - (d) Integral formalism in time domain - (e) Integral formalism in frequency domain - (f) Solving integral equations - (g) Boundary conditions - (h)  Examples of application


      Objectifs :

      Objectifs

      Knowledge:  Green’s function theory - integral formalism in time and frequency domain  _ Skills : be able to write and use the Green’s function in usual cases (Free space (1d to 3d) - reflecting boundaries and image sources - use the integral formalism in different simple applications - Acoustic field in small cavity - Acoustic field between two infinite wall - Sound radiation by a flat piston


      Pré-requis nécessaires :

      Conditions d'admission

      Acoustics I


      Informations complémentaires :

      Informations complémentaires

      Literature References : Alastuey, A., Clusel, M., Magro, M., & Pujol, P. (2015). Physics and Mathematical Tools: Methods and Examples. World Scientific Publishing Company. - Duffy, D. G. (2001). Green’s Functions with Applications. Chapman & Hall.

      On-line course
    • Bloc vibrations (3.0 crédits ECTS)
      • Vibrations experiments (2.0 crédits ECTS)Description :

        Présentation

        Free and forced oscillations of a system having a single or two degrees of freedom -  Determination of mode parameters of a beam / Chladni’s vibrating plates -  Forced vibrations of a beam -  Free oscillations of a string -  Revving of an engine / order analysis -  Dynamic balancing


        Pré-requis nécessaires :

        Conditions d'admission

        Vibrations Refresh


      • Vibration I
    • Signal analysis I (3.0 crédits ECTS)Description :

      Présentation

      1. Digital Filtering: (a) Introduction, properties of digital filters - (b) Analog systems simulation (IIR filters). Discrete-time approximation of loudspeaker behavior (practical) - (c) FIR filters design. Filtering with FIR Filters (practical) 2. Non stationary signal analysis:  (a) Introduction : stationarity vs non-stationarity, global ideas about time-frequency analysis, examples - (b) Limits of Fourier analysis and introduction to local Fourier analysis : classical Fourier transform (including time-frequency duality), Short-Time Fourier transform (definition, interpretation,  limits) (c) Frequencies : Instantaneous frequency, analytic signal, examples (favourable and un- favourable cases) - (d) Decompositions and densities : atomic decompositions (including wavelet analysis), densities (including Wigner-Ville decomposition) - 3. Acoustic Imaging: Acoustic intensimetry and beamforming - Nearfield Acoustic Holography (NAH) in cartesian coordinates -  Loudspeaker measurement with microphone arrays


      Objectifs :

      Objectifs

      Expected knowledge : –   Know the basics of digital filtering –   Know the basic tools of non-stationary signal analysis (Short-time Fourier Transform, wavelet analysis, Wigner-Ville distribution) –   Know the basic acoustic imaging method - Expected skills: –   Be able to design simple FIR and IIR filters –   Be able to apply them in a context of real-world data, in order to extract informations from data - Be able to write beamforming and Nearfield Acoustic Holography (NAH) codes


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis Refresh


      Informations complémentaires :

      Informations complémentaires

      Literature References : Edward P. Cunningham, Digital filtering : an introduction, New York : J. Wiley , 1995 - Time-Frequency Analysis, L. Cohen, Prentice-Hall, 1995 - Time-Frequency / Time-Scale Analysis, P. Flandrin, Academic Press, 1999  - A Wavelet Tour in Signal Processing, S. Mallat, 3rd Ed., Academic Press, 2009

       

      On-line courses
    • CAD modelling (2.0 crédits ECTS)Description :

      Présentation

      Basic principles and SolidWorks user interface, introduction to sketching, modeling simple parts (prismatic and revolution), use of advanced solid features (rehearsal, shells and ribs, scans, ...), use of drawings, upward assembly.


      Objectifs :

      Objectifs

      Be able to use a CAD software (SolidWorks)


      Online courses
    • Loudspeaker technology (1.0 crédits ECTS)Description :

      Présentation

      General concepts about materials : classification of materials, general mechanical proper- ties of materials, elastic and viscoelastic materials, equations of behaviour, experimental characterization techniques (elongation, flexion, Dynamical Mechanical Analysis) -  Technologies of materials : materials for membranes, materials for motors, materials for suspension, application of materials in loudspeaker design. Examples of design process and measurement techniques. Link between materials and perceptive aspects. -  FEM simulation of loudspeakers to understand to effect of material properties on acoustic radiation


      Objectifs :

      Objectifs

      Be able to choose materials (surround, spider, cone) for designing an electrodynamic loud- speaker -  Be able to design a numerical model of a loudspeaker to do a parametric study


      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, Loudspeaker systems


      Informations complémentaires :

      Informations complémentaires

      Literature References : Frankort, F. J. M. (1978). Vibration patterns and radiation behavior of loudspeaker cones. Journal of The Audio Engineering Society, 26(9), 609-622. - Klippel, W., & Schlechter, J. (2006, October). Measurement and visualization of loud- speaker cone vibration. In Audio Engineering Society Convention 121. Audio Engineering Society. - Klippel, W., & Schlechter, J. (2008, October). Distributed mechanical parameters describing vibration and sound radiation of loudspeaker drive units. In Audio Engineering Society Convention 125. Audio Engineering Society.

       

       

      Online courses
    • Digital filtering (2.0 crédits ECTS)Description :

      Présentation

      1. Delayed digital filtering: two-ways speaker system simulation : (a)    Electrical filters simulation with IIR - (b)    Loudspeakers simulation with IIR - (c)    Acoustic propagation simulation with FIR - (d)    Complete two-ways system simulation and auralisation - (e)   Complementary work (effect of acoustic enclosure, effect of voice coil impedance, effect of piston directivity)  - 2. Real time digital filtering


      Objectifs :

      Objectifs

      Be able to design and implement FIR and IIR filters for delayed and real time signal processing


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis I


      Informations complémentaires :

      Informations complémentaires

      Literature References : Digital filtering:  discrete-Time signal processing, Oppenheim and Schafer, Prentice Hall, 2nd edition, 1999 - Digital filtering: an introduction, Edward P. Cunningham, New York : J. Wiley , 1995

      On-line courses
    • LP analog electronics (3.0 crédits ECTS)Description :

      Présentation

      1. Tutorial (10h): a) BJT transistors, b) Common-emitter BJT transistor : class A amplifier, c) Common-collector BJT transistor (Push-Pull) : class B and AB amplifier, d) Heat-sink for power dissipation, e) Integrated audio power amplifier - 2. Practical (21h) audio amplifier design : a)  voltage amplifier circuit, b) current amplifier circuit , c) Push-Pull circuit, d) complete system : voltage amplifier+current amplifier+feedback, e) cabling, test, measurement and debug function by function, d) test and measurement of the complete system.


      Objectifs :

      Objectifs

      Be able to design an amplifier (class A, B, AB) using BJT transistors in common-emitter and common collector mode -  Be able to design an audio amplifier using an integrated audio power amplifier and to calculate the heat-sink for power dissipation -  Be able to build and measure an audio amplifier


      Pré-requis nécessaires :

      Conditions d'admission

      electronics basics and mathematics refresh


      Informations complémentaires :

      Informations complémentaires

      Literature References: P. HOROWIST, W. HILL. “The art of electronic”, Cambridge university press - M. GIRARD, “Amplificateurs de puissance” , McGraw-Hill - Internet course (in French)

      On-line courses
    • Transmission lines (2.0 crédits ECTS)Description :

      Présentation

      General concepts on transmission lines -  Equations of acoustic transmission lines without and with viscothermal effects -  Transfer Matrix and impedance calculation -  Effect of higher order modes -  Measurement techniques of acoustic wave guides

       


      Objectifs :

      Objectifs

      Be able to model a transmission line (duct, horn) thanks to telegraph equation and matrix formalism


      Pré-requis nécessaires :

      Conditions d'admission

      Acoustics I, transducers basics, loudspeaker systems


      Informations complémentaires :

      Informations complémentaires

      Literature References : Munjal, M. L. (2014). Acoustics of ducts and mufflers. John Wiley & Sons.- Transmission Line Theory

      On-line course
    • English (2.0 crédits ECTS)Objectifs :

      Objectifs

      Be able to communicate easily in English in a professionnal environment


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+

       


      Informations complémentaires :

      Informations complémentaires

      Literature References   Billet, C. D. (2000). Standard Technical English. Media Training Cor- poration.

    • Scientific expression (1.0 crédits ECTS)Description :

      Présentation

      Scientific writing and presentation : Scientific writing, Presentation, Posters, Effective visuals -

      Introduction to LaTeX and Beamer.


      Objectifs :

      Objectifs

      Be able to write a scientific document. Be able to give an oral defense in a limited time.


      Pré-requis nécessaires :

      Conditions d'admission

      English B2+


      Informations complémentaires :

      Informations complémentaires

      Literature  References : Scientific Writing, D. R. Lindsay Csiro Publishing, 2011 - 122 pages - The Art of Scientific Writing: From Student Reports to Professional Publications in Chem- istry and Related Fields Hans F. Ebel, Claus Bliefert, William E. Russey, William E.. Russey John Wiley & Sons, 12 mars 2004 - 595 pages - LateX Wiki Book - LateX tutorial - Tools for drawing in LateX - Beamer guide

      online course
    • Project (4.0 crédits ECTS)Description :

      Présentation

      I. First phase :  (a) Bibliographic research - (b) Design of the prototype (number of transducers, transducer type, acoustic load type, electrical filter type) - (c) First simulations based on Lumped Elements Models (Akabak,...) - (d) First oral presentation - II. Second phase :  (a) Sketch of the mechanical part of the system (with a CAD software) - (b) Improved simulation of the acoustic response - (c) Validation of the mechanical design - (d) First report and second oral presentation - Third phase :  (a)   Design of the filters - (b) Building of the system - (c) Measurement of the system and comparison with simulations - (d) Final report and final oral presentation


      Objectifs :

      Objectifs

      Be able to design, model, build and measure an audio prototype using a limited budget


      Pré-requis nécessaires :

      Conditions d'admission

      All first year courses


      Online courses
    • Project management (1.0 crédits ECTS)Description :

      Présentation

      Project scope and definition -  Project planning (WBS, OBS, RACI matrix, Gantt Chart, Budget, Risk analysis)


      Objectifs :

      Objectifs

      Be able to plan and organize a project.


      Online courses
    • Tools for job searching (1.0 crédits ECTS)Description :

      Présentation

      Course structure, Brainstorming and Important General Information -  CV and CL Workshop: Exchange and Help session -  Job Interview Workshop -  Communication styles by country and final Assignment -  Final Session – Job interviews


      Objectifs :

      Objectifs

      Be able to write CV and Covering letter (CL) in order to apply for a job in a specific country.

       


      Informations complémentaires :

      Informations complémentaires

      Literature  References : Careers and Employability Service, University of Kent - Eva Newman, Job Searching Tools for You! CreateSpace Independent Publishing Platform, 31 janv. 2016 - 82 pages

      Online courses
  • Semestre 3 M Acoustique - Electroacoustique
    • SeminarsDescription :

      Présentation

       Seminars about audio given by academic, industrial or alumni


      Objectifs :

      Objectifs

      Know the different activities performed in different companies - Be able to build a network of different people working companies


      Seminars course on-line
    • 3D sound (2.0 crédits ECTS)Description :

      Présentation

      • Spatial perception (how the auditory system localizes sounds), stereophony and multichannel audio
      • Binaural technology, Holophony and WaveField Synthesis, Ambisonics and Higher Order Ambisonics
      • Principle of sound zones controls

      Objectifs :

      Objectifs

      • Know the auditory perception cues
      • Know the different techniques for 3D sound
      •  Know how to control the sound field in a defined region

      Informations complémentaires :

      Informations complémentaires

      • Jens Ahrens, Analytic Methods of Sound Field Synthesis, Springer Science & Business Media, 25 janv. 2012 - 300 pages
      • Rozenn Nicol, Binaural Technology, Audio Engineering Society, 2010 - 77 pages
      • Roginska de Agnieszka, Paul Geluso, Immersive Sound: The Art and Science of Binaural and MultiChannel Audio, Audio Engineering Society, 2017

       

      39

       

    • Loudspeaker modelling (2.0 crédits ECTS)Description :

      Présentation

      1. Lumped parameter modelling and measurement, state space modelling of linear systems (Loudspeaker, loudspeaker in vented box)
      2. Modelling of non linear effects in loudspeakers. Study of THD and IMD. State space mod- elling of nonlinear loudspeaker
      3. Physical causes and nonlinear symptoms, Diagnostics on regular large signal performance, Diagnostics on irregular loudspeaker defects, Power Handling, Heating, Aging, Climate, Meaningful Loudspeaker Specifications

      Objectifs :

      Objectifs

      • Be able to model analytically the main non linearities (Le, Bl, Cms)
      • Be able to model analytically thermal effects in a loudspeaker
      • Be able to make model the loudspeaker radiation taking into account modal vibration
      • Be able to make a simulation of a non linear loudspeaker (electrical and mechanical parts)
      • Be able to make an auralization of non linear loudspeakers

      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, Loudspeaker systems, materials for loudspeaker


      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Klippel, Wolfgang. Tutorial: Loudspeaker nonlinearities—Causes, parameters, symptoms. Journal of the Audio Engineering Society 54.10 (2006): 907-939.
      • Klippel, Wolfgang. ””Nonlinear modeling of the heat transfer in loudspeakers. Journal of the Audio Engineering Society 52.1/2 (2004): 3-25.
      • Agerkvist, Finn. Modelling loudspeaker non-linearities. Audio Engineering Society Confer- ence: 32nd International Conference: DSP For Loudspeakers. Audio Engineering Society, 2007.
      • Jakobsson, David, and Marcus Larsson. Modelling and compensation of nonlinear loud- speaker (2010).

       

      On-line course
    • Microphone modelling (1.0 crédits ECTS)Description :

      Présentation

      1. Generalities on microphones
      2. Basic modelling of microphones
      3. Advanced modelling of microphones

      Objectifs :

      Objectifs

      Be able to model and electrostatic microphone sensitivity taking into account the effect of viscothermal losses


      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, microphone basics, transmission lines, acoustics


      On-line course
    • Electrodynamic motors (2.0 crédits ECTS)Description :

      Présentation

      1. Basics of magnetism

      (a)    Magnetic field (demonstration of magnetic field, sources of magnetic field, mathematical representation of magnetic field)

      (b)    Electromagnetism: the phenomena associated with electric and magnetic fields and their interactions with each other and with electric charges and currents.

      (c)    Magnetic materials (Magnetic moment, Atomic origin of magnetism, Magnetic material model: Amperian model, Magnetization and magnetic fields quantities, Reaction of magnetic materials submitted to an external magnetic field: Susceptibility and permeability, demagnetizing field)

      (d)    Ferromagnetic materials (Classification of magnetic materials: diamagnetic, paramagnetic and ferromagnetic. Domain structure, Magnetization process: hysteresis loop, Soft and hard ferromagnetic materials, Design of permanent magnet: load line and, working point, Evershed’s criterion)

       

      2. Application of magnetism to loudspeaker motor design

      (a)    Part 1: magnetostatics (Recap of magnetic materials characteristics, Loudspeaker motor structure, Circuit analogy, From Maxwell’s equations to design principles, Exam- ples)

      (b)    Part 2: voice coil design (Parameters in voice coil design, Goals and constraints, Worked example)

       

      3. 2D FEM modelling of motors (with free software FEMM)


      Objectifs :

      Objectifs

      • Know the basics of magnetism
      • Know the physics of an electrodynamic motor
      • Be able to model an electrodynamic motor using a FEM software

      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Magnetism I & II, E. du Tre´ molet de Lacheisserie, PUG, 1999 (in French)
      • Introduction to solid state physics, Ch. Kittel, Wiley, 2004
      • Solid state physics , N. Ashcroft et D. Mermin , EDP Sciences
      • Magnetism and magnetic materials, J.M.D. Coey, Cambridge edition
      • Peter Campbell, “Permanent Magnet Materials and their Application”, Cambridge University Press, 1996
      On-line course
    • Mini and micro Transducers (1.0 crédits ECTS)Description :

      Présentation

      1. General models of headphones and earphones (lumped elements model of the loudspeaker, model of the ear)

      (a)    Introduction

      (b)    Classification

      (c)    Lumped Elements Modeling (headphone without ear, sealed enclosure, enclosure with leakage)

      (d)    Headphone with ear (model of the ear, coupling the headphone with the ear)

      2. Measurement techniques for mini and micro transducers

      (a)    Microphones : ECM and MEMS - Specifications and measurements

      (b)    Micro-speakers : Dynamic and Balanced Armature - Specifications and measurements

      (c)    Two-port modelling                                                                                  

      (d)    Measurement hardware : couplers and acquisition systems

       

      3. MEMS microphones

      (a)   Microphone history

      (b)    Microphone design criteria

      (c)    Microphone modelling

      (d)    MEMS microphone as measuring microphones, calibration


      Objectifs :

      Objectifs

       

      • Be able to model the response of a headphone
      • Know the technology of micro and mini transducers
      • Know the principle of MEMS transducers

      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, microphone basics, transmission lines, acoustics


      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Borwick, J. (Ed.). (2012). Loudspeaker and headphone handbook. CRC Press.
      • Beranek, L. L., & Mellow, T. J. (2012). Acoustics: sound fields and transducers. Academic Press.
      • Søren Jønsson, Bin Liu, Lars B. Nielsen, Andreas Schuhmacher, Simulation of Couplers, AES, Workshop 7, 2003 March 23rd
      On-line course
    • Numerical Vibroacoustics (3.0 crédits ECTS)Description :

      Présentation

      • Introduction of BEM principles. Introduction to ABEC (Acoustic Boundary Element Calculator). Study of simple cases
      • Simple models of acoustics in closed and opened systems by FEM and/or BEM approaches with Comsol. Computation of vibrations modes for structures and acoustic modes for closed cavities by FEM, vibroacoustic coupling on the solid / fluid interface, Applications to more complex systems.

      Objectifs :

      Objectifs

      Be able to use Boundary Elements Modelling and Finite Elements Modelling software (ABEC, COMSOL) for simple applications.


    • Transducers measurements (2.0 crédits ECTS)Description :

      Présentation

      1. Microphones measurements techniques (measurement microphone data sheet, relative calibration, absolute calibration)
      2. Loudspeakers measurement techniques (advanced approaches in measurements using a sound card and a programming platform, advanced approaches in loudspeaker measure- ments leading to models at higher levels)
      3. Practicals on measurement systems, loudspeakers, headphones and microphones

      Objectifs :

      Objectifs

      • Know the principle of measurement microphones
      • Know the usual techniques for microphone calibration
      • Be able to develop a measuring test bench using a sound card and a programming software
      • Be able to measure different Transducers (microphone, loudspeaker, headphone, earphones) according to the usual standards

      Pré-requis nécessaires :

      Conditions d'admission

      Transducers basics, Loudspeaker technology, Matlab for Audio, Signal Analysis I


      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Measurement microphones, Bruel & Kjaer, 1994
      • Frederiksen, E. (2013). Acoustic metrology–an overview of calibration methods and their uncertainties. International Journal of Metrology and Quality Engineering, 4(2), 97-107.
      • Stan, G. B., Embrechts, J. J., & Archambeau, D. (2002). Comparison of different impulse response measurement techniques. Journal of the Audio Engineering Society, 50(4), 249- 262.
      • Farina, A. (2000, February). Simultaneous measurement of impulse response and distortion with a swept-sine technique. In Audio Engineering Society Convention 108. Audio Engineering Society.
      • Novak, A., Simon, L., Kadlec, F., & Lotton, P. (2010). Nonlinear system identification using exponential sweptsine signal. IEEE Transactions on Instrumentation and Measurement, 59(8), 2220-2229.
      • International standard IEC 60268-5, Sound system equipment – Part 5: Loudspeakers
      • International standard IEC 60268-7:2010, Sound system equipment - Part 7: Headphones and earphones
      • International standard IEC 62458:2010 Sound system equipment - Electroacoustical transducers - Measurement of large signal parameters
      On-line course
    • Signal analysis II (2.5 crédits ECTS)Description :

      Présentation

      • Linear signal modeling

       

      –   Identification of measured FRF

      –   Autoregressive, Moving Average, Autoregressive and Moving Average models

      –   Linear prediction

      –   Modern Power Spectrum Estimation

      –   Pisarenko, Prony methods, decomposition in subspaces

       

      • AcousAcoustic imaging with holography and beamforming

       

      –   Bartlett processing, Capon and Music

      –   Deconvolution

      –   Holography for non stationary sources


      Objectifs :

      Objectifs

      • Be able to implement autoregressive models
      • Be able to use and implement parametric Power Spectrum Estimation of a signal
      •  Be able to use and implement array processing methods

       


      Pré-requis nécessaires :

      Conditions d'admission

      Signal Analysis Refresh 1.1.6, elements of filtering, Z-transform 2.6


      Informations complémentaires :

      Informations complémentaires

      Literature References

       

      • Digital Signal Processing: Principles, Algorithms and Applications (J. G. Proakis and D. G. Manolakis), Upper Saddle River, NJ: Prentice Hall, 1996.

       

      • Discrete-Time Signal Processing (A. V. Oppenheim and R. W. Schafer), Englewood Cliffs, NJ: Prentice Hall, 1989.

       

      • Modern Spectral Estimation (S. M. Kay), Englewood Cliffs, NJ: Prentice Hall, 1988.

       

      • Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography (E. G. Williams), Academic Press, New-York, 1999.
    • Adaptive filtering (2.0 crédits ECTS)
    • Power electronics (2.0 crédits ECTS)
    • Advanced Transducer Project (6.0 crédits ECTS)
    • Radiation of transducers (3.5 crédits ECTS)
  • Semestre 4 M Acoustique - Electroacoustique
    • Numerical modelling of Transducers (4.0 crédits ECTS)Description :

      Présentation

      BEM modelling (ABEC) of electroacoustical devices (loudspeaker + load + radiation) -  FEM modelling (COMSOL) of compression chamber loudspeaker

       


      Objectifs :

      Objectifs

      Be able to model real electroacoustical devices using BEM / FEM softwares (ABEC, COMSOL)


      Informations complémentaires :

      Informations complémentaires

      Literature References : Roger Pryor, Multiphysics Modeling Using COMSOL?: A First Principles Approach, Jones & Bartlett Learning, 2011 - 852 pages - Comsol application gallery - ABEC Software

    • Master's thesis (700h) (26.0 crédits ECTS)Objectifs :

      Objectifs

      Be able to apply the skills and knowledge acquired during semesters 1, 2 and 3 during a 5 months internship (in a company or a laboratory)


      Pré-requis nécessaires :

      Conditions d'admission

      First and second year courses


Contrôle des connaissances

Modalité de contrôle des connaissances générales

Et après

Poursuite d'études

Insertion professionnelle

Electro Acoustics is an exciting area with multi-disciplinary studies of signal, electronics, sound and vibration phenomena. Our graduates are employed world-wide by companies, research centres and authorities involved in hearing aid systems, telephones, transducer manufacturing, audio-system engineering, sound and vibrations measurement equipment.

  • Typical examples of career opportunities as a specialist in electroacoustics are:
    • Consumer electronics (phones, multimedia, nomad devices)
    • Public address systems in buildings
    • High power sound reinforcement for shows and events
    • Transducers for automotive, aeronautical and rail transport
    • Environment & health (noise reduction, hearing aids, …)

Composante

Lieu(x) de la formation

  • Le Mans

Contacts

Contact administratif
UFR Sciences et Techniques - Scolarité

Email : sco-sciences @ univ-lemans.fr

Partagez : FacebookTwitterLinkedInMailImprimez